# THE GENERALIZED HYERS-ULAM STABILITY OF QUADRATIC FUNCTIONAL EQUATION WITH AN INVOLUTION IN NON-ARCHIMEDEAN SPACES

CHANG IL KIM\* AND CHANG HYEOB SHIN\*\*

ABSTRACT. In this paper, using fixed point method, we prove the Hyers-Ulam stability of the following functional equation  $(k+1)f(x+y)+f(x+\sigma(y))+kf(\sigma(x)+y)-2(k+1)f(x)-2(k+1)f(y)=0$ 

with an involution  $\sigma$  for a fixed non-zero real number k with  $k \neq -1$ .

## 1. Introduction and preliminaries

In 1940, Ulam [13] posed the following problem concerning the stability of functional equations: Let  $G_1$  be a group and let  $G_2$  a meric group with the metric  $d(\cdot,\cdot)$ . Given  $\epsilon > 0$ , does there exist a  $\delta > 0$  such that if a mapping  $h: G_1 \longrightarrow G_2$  satisfies the inequality  $d(h(xy), h(x)h(y)) < \delta$  for all  $x, y \in G_1$ , then there exists a homomorphism  $H: G_1 \longrightarrow G_2$  with  $d(h(x), H(x)) < \epsilon$  for all  $x \in G_1$ ?

Hyers [6] solved the Ulam's problem for the case of approximately additive functions in Banach spaces. Since then, the stability of several functional equations have been extensively investigated by several mathematicians [3, 5, 7, 8]. The Hyers-Ulam stability for the quadratic functional equation

(1.1) 
$$f(x+y) + f(x-y) = 2f(x) + 2f(y)$$

was proved by Skof [11] for a function  $f: E_1 \longrightarrow E_2$ , where  $E_1$  is a normed space and  $E_2$  is a Banach space and later by Jung [10] on unbounded domains.

Received February 13, 2014; Accepted April 07, 2014.

<sup>2010</sup> Mathematics Subject Classification: Primary 39B82, 39B52.

Key words and phrases: generalized Hyers-Ulam stability, quadratic functional equation, fixed point, non-Archimedean space.

Correspondence should be addressed to Chang Hyeob Shin, seashin@hanmail.net.

Let X and Y be real vector spaces. For an additive mapping  $\sigma: X \longrightarrow X$  with  $\sigma(\sigma(x)) = x$  for all  $x \in X$ , then  $\sigma$  is called an involution of X. For a given involution  $\sigma: X \longrightarrow X$ , the functional equation

(1.2) 
$$f(x+y) + f(x+\sigma(y)) = 2f(x) + 2f(y)$$

for all  $x, y \in X$  is called the quadratic functional equation with an involution and a solution of (1.2) is called a quadratic mapping with an involution. The functional equation (1.2) has been studied by Stetker [12] and the Hyers-Ulam-Rassias Theorem has been obtained by Bouikhalene et al. [1, 2, 9].

In this paper, using fixed point method, we prove the generalized Hyers-Ulam stability of the following functional equation (1.3)

$$(k+1)f(x+y)+f(x+\sigma(y))+kf(\sigma(x)+y)-2(k+1)f(x)-2(k+1)f(y)=0$$
 for a fixed non-zero real number  $k$  with  $k \neq -1$ .

A valuation is a function  $|\cdot|$  from a field K into  $[0, \infty)$  such that for any  $r, s \in K$ , the following conditions hold: (i) |r| = 0 if and only if r = 0, (ii) |rs| = |r||s|, and (iii)  $|r + s| \le |r| + |s|$ .

A field K is called a valued field if K carries a valuation. The usual absolute values of  $\mathbb{R}$  and  $\mathbb{C}$  are examples of valuations. If the triangle inequality is replaced by  $|r+s| \leq \max\{|r|,|s|\}$  for all  $r,s \in K$ , then the valuation  $|\cdot|$  is called a non-Archimedean valuation and the field with a non-Archimedean valuation is called non-Archimedean field. If  $|\cdot|$  is a non-Archimedean valuation on K, then clearly, |1| = |-1| and  $|n| \leq 1$  for all  $n \in \mathbb{N}$ .

DEFINITION 1.1. Let X be a vector space over a scalar field K with a non-Archimedean nontrivial valuation  $|\cdot|$ . A function  $||\cdot||: X \longrightarrow \mathbb{R}$  is called a non-Archimedean norm if satisfies the following conditions:

- (a) ||x|| = 0 if and only if x = 0,
- (b) ||rx|| = |r|||x||, and
- (c) the strong triangle inequality (ultrametric) holds, that is,

$$||x + y|| \le max\{||x||, ||y||\}$$

for all  $x, y \in X$  and all  $r \in K$ .

If  $\|\cdot\|$  is a non-Archimedean norm, then  $(X, \|\cdot\|)$  is called a non-Archimedean normed space. Let  $(X, \|\cdot\|)$  be a non-Archimedean normed space. Let  $\{x_n\}$  be a sequence in X. Then  $\{x_n\}$  is said to be convergent if there exists  $x \in X$  such that  $\lim_{n\to\infty} \|x_n - x\| = 0$ . In that case, x is called the limit of the sequence  $\{x_n\}$ , and one denotes it by  $\lim_{n\to\infty} x_n = 1$ 

x. A sequence  $\{x_n\}$  is said to be a Cauchy sequence if  $\lim_{n\to\infty} ||x_{n+p}-x_n||$  $|x_n|| = 0$  for all  $p \in \mathbb{N}$ . Since

$$||x_n - x_m|| \le max\{||x_{j+1} - x_j|| \mid m \le j \le n - 1\} \quad (n > m),$$

a sequence  $\{x_n\}$  is Cauchy in  $(X, \|\cdot\|)$  if and only if  $\{x_{n+1}-x_n\}$  converges to zero in  $(X, \|\cdot\|)$ . By a complete non-Archimedean space we mean one in which every Cauchy sequence is convergent.

Theorem 1.2. [4] Let (X, d) be a complete generalized metric space and let  $J: X \longrightarrow X$  be a strictly contractive mapping with some Lipschitz constant L with 0 < L < 1. Then for each given element  $x \in X$ , either  $d(J^n x, J^{n+1} x) = \infty$  for all nonnegative integers n or there exists a positive integer  $n_0$  such that

- (1)  $d(J^n x, J^{n+1} x) < \infty$  for all  $n > n_0$ ;
- (2) the sequence  $\{J^n x\}$  converges to a fixed point  $x^*$  of J;
- (3)  $x^*$  is the unique fixed point of J in the set  $Y = \{y \in X \mid d(J^{n_0}x, y) < 0\}$

(4) 
$$d(y, y^*) \le \frac{1}{1 - L} d(y, Jy)$$
 for all  $y \in Y$ .

Throughout this paper, we assume that X is a non-Archimedean normed space and Y is a complete non-Archimedean normed space.

### 2. Solutions of (1.3)

In this section, we investigate solutions of (1.3). We start with the following lemma.

LEMMA 2.1. Let  $f: X \longrightarrow Y$  be mapping. Then f satisfies (1.3) if and only if f is a quadratic mapping with an involution.

*Proof.* Suppose that f satisfies (1.3). Letting x = y = 0 in (1.3), we have f(0) = 0. Letting  $x = x + \sigma(x)$ ,  $y = x + \sigma(x)$  in (1.3), we have

$$2(k+1)f(2(x+\sigma(x))) = 4(k+1)f(x+\sigma(x))$$

for all  $x \in X$  and since  $k \neq -1$ ,

(2.1) 
$$f(2(x + \sigma(x))) = 2f(x + \sigma(x))$$

for all  $x \in X$ . Letting  $x = x + \sigma(y)$ ,  $y = \sigma(x) + y$  in (1.3), we get

$$(2.2) \quad (k+1)f(x+y+\sigma(x+y)) + f(2(x+\sigma(y))) + kf(2(\sigma(x)+y))$$
$$= 2(k+1)f(x+\sigma(y)) + 2(k+1)f(\sigma(x)+y))$$

for all  $x, y \in X$ . Letting  $x = \sigma(x) + y$ ,  $y = x + \sigma(y)$  in (1.3), we get

$$(2.3) \quad (k+1)f(x+y+\sigma(x+y)) + f(2(\sigma(x)+y)) + kf(2(x+\sigma(y)))$$
$$= 2(k+1)f(\sigma(x)+y) + 2(k+1)f(x+\sigma(y))$$

for all  $x, y \in X$ . From (2.2) and (2.3),

$$f(2(x + \sigma(y))) = f(2(\sigma(x) + y))$$

for all  $x, y \in X$ . By (2.1),

$$(2.4) f(x + \sigma(y)) = f(\sigma(x) + y)$$

for all  $x, y \in X$ . Substituting (2.4) by (1.3), we get

$$f(x + y) + f(x + \sigma(y)) = 2f(x) + 2f(y)$$

Therefore f be quadratic with an involution.

Assume that  $f(x+y)+f(x+\sigma(y))=2f(x)+2f(y)$ . Letting x=y=0 in (1.3), we have f(0)=0. Letting x=0 in (1.3), we have

$$(2.5) f(y) = f(\sigma(y))$$

for all  $y \in X$ . By (2.5)

$$(2.6) f(x+y) + f(\sigma(x) + y) = 2f(x) + 2f(y)$$

for all 
$$x, y \in X$$
. From (1.3) and (2.6), f satisfies (1.3).

REMARK 2.2. The mapping  $f: X \longrightarrow Y$  satisfying (1.3) for the case k = -1 is not quadratic. In fact, for  $a \in Y$  with  $a \neq 0$ , the constant mapping f(x) = a satisfies (1.3) but it is not quadratic.

# 3. The generalized Hyers-Ulam stability for (1.3)

Using the fixed point methods, we will prove the generalized Hyers-Ulam stability of the quadratic functional equation (1.3) with an involution  $\sigma$  in non-Archimedean normed space.

THEOREM 3.1. Assume that  $\phi: X^2 \longrightarrow [0, \infty)$  is a mapping and there exists a real number L with 0 < L < 1 such that

(3.1) 
$$\phi(2x, 2y) < |4|L\phi(x, y), \ \phi(x + \sigma(x), y + \sigma(y)) < |4|L\phi(x, y)$$

for all  $x, y \in X$ . Let  $f: X \longrightarrow Y$  be a mapping such that f(0) = 0 and

(3.2) 
$$\|(k+1)f(x+y) + f(x+\sigma(y)) + kf(\sigma(x)+y) - 2(k+1)f(x) - 2(k+1)f(y)\| \le \phi(x,y)$$

for all  $x,y\in X$  and a fixed real number k with  $k\neq -1$ . Then there exists a unique quadratic mapping  $Q:X\longrightarrow Y$  with an involution such that

(3.3) 
$$||f(x) - Q(x)|| \le \frac{1}{|4(k+1)|(1-L)}\phi(x,x)$$

for all  $x \in X$ .

Proof. Consider the set  $S=\{g\mid g: X\longrightarrow Y\}$  and the generalized metric d in S defined by  $d(g,h)=\inf\{c\in[0,\infty)|\ \|g(x)-h(x)\|\le c\ \phi(x,x)$  for all  $x\in X\}$ . Then (S,d) is a complete metric space(See [9]). Define a mapping  $J:S\longrightarrow S$  by  $Jg(x)=\frac{1}{4}\{g(2x)+g(x+\sigma(x))\}$  for all  $x\in X$  and all  $g\in S$ . Let  $g,h\in S$  and  $d(g,h)\le c$  for some non-negative real number c. Then by (3.1), we have

$$\begin{aligned} & \|Jg(x) - Jh(x)\| \\ &= \frac{1}{|4|} \|g(2x) + g(x + \sigma(x)) - h(2x) - h(x + \sigma(x))\| \\ &\leq \frac{1}{|4|} max \{ \|g(2x) - h(2x)\|, \|g(x + \sigma(x)) - h(x + \sigma(x))\| \} \\ &\leq cL\phi(x, x) \end{aligned}$$

for all  $x \in X$ . Hence we have  $d(Jg, Jh) \leq Ld(g, h)$  for any  $g, h \in S$  and so J is a strictly contractive mapping.

Next, we claim that  $d(Jf, f) < \infty$ . Putting y = x in (3.2) and dividing both sides by |4(k+1)|, we get

$$\left\| \frac{1}{4} \{ f(2x) + f(x + \sigma(x)) \} - f(x) \right\| = \|Jf(x) - f(x)\| \le \frac{1}{|4(k+1)|} \phi(x, x)$$

for all  $x \in X$  and hence

$$(3.4) d(Jf,f) \le \frac{1}{|4(k+1)|} < \infty.$$

By Theorem 1.2, there exists a mapping  $Q: X \longrightarrow Y$  which is a fixed point of J such that  $d(J^n f, Q) \to 0$  as  $n \to \infty$ . By induction, we can easily show that

$$(J^n f)(x) = \frac{1}{2^{2n}} \Big\{ f(2^n x) + (2^n - 1) f\Big(2^{n-1} \big(x + \sigma(x)\big)\Big) \Big\}$$

for all  $x \in X$  and  $n \in \mathbb{N}$ . Since  $d(J^n f, Q) \to 0$  as  $n \to \infty$ , there exists a sequence  $\{c_n\}$  in  $\mathbb{R}$  such that  $c_n \to 0$  as  $n \to \infty$  and  $d(J^n f, Q) \le c_n$  for every  $n \in \mathbb{N}$ . Hence, it follows from the definition of d that

$$||(J^n f)(x) - Q(x)|| \le c_n \phi(x, x)$$

for all  $x \in X$ . Thus for each fixed  $x \in X$ , we have

$$\lim_{n \to \infty} ||(J^n f)(x) - Q(x)|| = 0$$

and

(3.5) 
$$Q(x) = \lim_{n \to \infty} \frac{1}{2^{2n}} \Big\{ f(2^n x) + (2^n - 1) f\Big(2^{n-1} (x + \sigma(x))\Big) \Big\}.$$

It follows from (3.2) and (3.5) that

$$\|(k+1)Q(x+y)+Q(x+\sigma(y))+kQ(\sigma(x)+y)-2(k+1)Q(x)-2(k+1)Q(y)\|$$

$$\leq \lim_{n \to \infty} \frac{1}{|4|^n} \max\{\phi(2^n x, 2^n y), |2^n - 1|\phi(2^{n-1}(x + \sigma(x)), 2^{n-1}(y + \sigma(y)))\}$$
  
$$\leq \lim_{n \to \infty} \frac{1}{|4|^n} \max\{|4|^n L^n \phi(x, y), |2^n - 1||4|^n L^n \phi(x, y)\} = 0$$

for all  $x, y \in X$ , because |4|L < 1 and  $|2^n - 1| < 1$ . Hence Q satisfies (1.3) and by Lemma 2.1, Q is a quadratic mapping with an involution. By (4) in Theorem 1.2 and (3.4), f satisfies (3.3).

Assume that  $Q_1: X \longrightarrow Y$  is another solution of (1.3) satisfying (3.3). We know that  $Q_1$  is a fixed point of J. Due to (3) in Theorem 1.2, we get  $Q = Q_1$ . This proves the uniqueness of Q.

THEOREM 3.2. Assume that  $\phi: X^2 \longrightarrow [0,\infty)$  is a mapping and there exists a real number L with 0 < L < 1 such that

(3.6) 
$$\phi(x,y) \le \frac{L}{|4|}\phi(2x,2y), \ \phi(x+\sigma(x),y+\sigma(y)) \le \frac{L}{|2|}\phi(4x,4y)$$

for all  $x, y \in X$ . Let  $f: X \longrightarrow Y$  be a mapping satisfying (3.2) and f(0) = 0. Then there exists a unique quadratic mapping  $Q: X \longrightarrow Y$  with an involution such that

(3.7) 
$$||f(x) - Q(x)|| \le \frac{L}{|4(k+1)|(1-L)}\phi(x,x)$$

for all  $x \in X$ .

*Proof.* Consider the set  $S = \{g \mid g : X \longrightarrow Y\}$  and the generalized metric d in S defined by  $d(g,h) = \inf\{c \in [0,\infty) | \|g(x) - h(x)\| \le c \ \phi(x,x) \text{ for all } x \in X\}$ . Then (S,d) is a complete metric space. Define a mapping  $J: S \longrightarrow S$  by

$$Jg(x) = 4\left\{g\left(\frac{x}{2}\right) - \frac{1}{2}g\left(\frac{x + \sigma(x)}{4}\right)\right\}$$

for all  $x \in X$  and all  $g \in S$ . Let  $g, h \in S$  and  $d(g, h) \leq c$  for some non-negative real number c. Then by (3.13), we have

$$\begin{split} & \|Jg(x) - Jh(x)\| \\ & = |4| \left\| g\left(\frac{x}{2}\right) - \frac{1}{2}g\left(\frac{x + \sigma(x)}{4}\right) - h\left(\frac{x}{2}\right) + \frac{1}{2}h\left(\frac{x + \sigma(x)}{4}\right) \right\| \\ & \leq |4| max \Big\{ \left\| g\left(\frac{x}{2}\right) - h\left(\frac{x}{2}\right) \right\|, \frac{1}{|2|} \left\| g\left(\frac{x + \sigma(x)}{4}\right) - h\left(\frac{x + \sigma(x)}{4}\right) \right\| \Big\} \\ & \leq cL\phi(x, x) \end{split}$$

for all  $x \in X$ . Hence  $d(Jg, Jh) \leq Ld(g, h)$  for any  $g, h \in S$  and so J is a strictly contractive mapping.

Next, we claim that  $d(Jf, f) < \infty$ . Putting  $x = \frac{x}{2}$  and  $y = \frac{x}{2}$  in (3.2) and dividing both sides by |k+1|, we get

and putting  $x = \frac{x + \sigma(x)}{4}$  and  $y = \frac{x + \sigma(x)}{4}$  in (3.2) and dividing both sides by |2(k+1)|, we get

$$\left\| f\left(\frac{x+\sigma(x)}{2}\right) - 2f\left(\frac{x+\sigma(x)}{4}\right) \right\| \le \frac{1}{|2(k+1)|} \phi\left(\frac{x+\sigma(x)}{4}, \frac{x+\sigma(x)}{4}\right)$$

for all  $x \in X$ . Combining (3.8) and (3.9), by (3.6), we deduce that

$$||Jf(x) - f(x)|| = \left| |4f\left(\frac{x}{2}\right) - 2f\left(\frac{x + \sigma(x)}{4}\right) - f(x)| \right| \le \frac{L}{|4(k+1)|}\phi(x, x)$$

for all  $x \in X$  and hence

$$d(Jf, f) \le \frac{L}{|4(k+1)|} < \infty.$$

By Theorem 1.2, there exists a mapping  $Q: X \longrightarrow Y$  which is a fixed point of J such that  $d(J^n f, Q) \to 0$  as  $n \to \infty$ . By induction, we can easily show that

$$(J^n f)(x) = 2^{2n} \left\{ f\left(\frac{x}{2^n}\right) + \left(\frac{1}{2^n} - 1\right) f\left(\frac{x + \sigma(x)}{2^{n+1}}\right) \right\}$$

for each  $n \in \mathbb{N}$ . Since  $d(J^n f, Q) \to 0$  as  $n \to \infty$ , there exists a sequence  $\{c_n\}$  in  $\mathbb{R}$  such that  $c_n \to 0$  as  $n \to \infty$  and  $d(J^n f, Q) \leq c_n$  for every  $n \in \mathbb{N}$ . Hence, it follows from the definition of d that

$$||(J^n f)(x) - Q(x)|| \le c_n \phi(x, x)$$

for all  $x \in X$ . Thus for each fixed  $x \in X$ , we have

$$\lim_{n \to \infty} ||(J^n f)(x) - Q(x)|| = 0$$

and

$$Q(x) = 2^{2n} \left\{ f\left(\frac{x}{2^n}\right) + \left(\frac{1}{2^n} - 1\right) f\left(\frac{x + \sigma(x)}{2^{n+1}}\right) \right\}.$$

Analogously to the proof of Theorem 3.1, we can show that Q is a unique quadratic mapping with an involution satisfying (3.7).

As examle of  $\phi(x,y)$  in Theorem 3.1 and Theorem 3.2, we can take  $\phi(x,y) = \theta(\|x\|^p + \|y\|^p)$  for all  $x,y \in X$ . Then we have the following corollary.

COROLLARY 3.3. Let  $\theta \geq 0$  and p be a positive real number with  $p \neq 2$ . Suppose that |2| < 1. Let  $f: X \longrightarrow Y$  be a mapping satisfying (3.10)

$$||(k+1)f(x+y) + f(x+\sigma(y))| + kf(\sigma(x) + y) - 2(k+1)f(x) - 2(k+1)f(y)|| < \theta(||x||^p + ||y||^p)$$

and  $||x + \sigma(x)||^p \le |2|^p ||x||^p$  for all  $x, y \in X$ . Then there exists a unique mapping  $Q: X \longrightarrow Y$  with an involution such that Q is a solution of the functional equation (1.3) and the inequality

$$||f(x) - Q(x)|| \le \begin{cases} \frac{2}{|1 + k|(|4| - |2|^p)} \theta ||x||^p, & \text{if } p > 2, \\ \\ \frac{2}{|1 + k|(|2|^p - |4|)} \theta ||x||^p, & \text{if } 0 \le p < 2 \end{cases}$$

holds for all  $x \in X$ .

#### References

- [1] B. Boukhalene, E. Elqorachi, and Th. M. Rassias, On the generalized Hyers-Ulam stability of the quadratic functional equation with a general involution, Nonlinear Funct. Anal. Appl. 12 (2007), no. 2, 247-262.
- [2] \_\_\_\_\_\_, On the Hyers-Ulam stability of approximately pexider mappings, Math. Ineqal. Appl. 11 (2008), 805-818.
- [3] S. Czerwik, Functional equations and Inequalities in several variables, World Scientific, New Jersey, London, 2002.
- [4] J. B. Diaz, Beatriz Margolis A fixed point theorem of the alternative, for contractions on a generalized complete metric space Bull. Amer. Math. Soc. 74 (1968), 305-309.
- [5] G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), 143-190.

- [6] D. H. Hyers, On the stability of linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224.
- [7] D. H. Hyers, G. Isac, and T. M. Rassias, Stability of functional equations in several variables, Birkhäuser, Boston, 1998.
- [8] D. H. Hyers and T. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125-153.
- [9] S. M. Jung and Z. H. Lee, A fixed point approach to the stability of quadratic functional equation with involution, Fixed Point Theory Appl. 2008.
- [10] S. M. Jung, On the Hyers-Ulam stability of the functional equation that have the quadratic property, J. Math. Anal. Appl. 222 (1998), 126-137.
- [11] F. Skof, Approssimazione di funzioni  $\delta$ -quadratic su dominio restretto, Atti. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 118 (1984), 58-70.
- [12] H. Stetkær, Functional equations on abelian groups with involution, Aequationes Math. 54 (1997), 144-172.
- $[13]\,$  S. M. Ulam, A collection of mathematical problems, Interscience Publ., New York, 1960.

Department of Mathematics Education Dankook University Yongin 448-701, Republic of Korea E-mail: kci206@hanmail.net

Department of Mathematics Soongsil University Seoul 156-743, Republic of Korea E-mail: seashin@hanmail.net